

[image: cover image]

Copyright © 2025 Mark Szymczyk.

Introduction
In Profiling Swift Apps you will learn how to use Instruments to profile iOS and Mac apps. Profile your apps to find performance problems so you can fix them and make apps that run better, use less memory and run faster without hangs or hitches.

What is Instruments?
Instruments is an app bundled with Xcode that records and displays statistics about your app as it runs. Instruments comes with a collection of instruments, each of which records a specific set of statistics. Some popular instruments include the following:

	The Leaks instrument checks your app for memory leaks.

	The Allocations instrument records statistics about memory allocations.

	The Time Profiler instrument measures CPU usage and helps you find the slow spots in your code.

Use Instruments to check if your app has any problems, such as memory leaks, high memory usage, and high CPU usage. If you find a problem, Instruments helps you find the source of the problem so you can fix it.

If you’re learning iOS or Mac development, you’re not going to use Instruments at first. You normally use Instruments when you get closer to shipping an app. However, if your iOS app generates memory warnings when you run it or your app runs really slow, you should profile the app with Instruments to find the source of the problem.

A nice feature of Instruments is you don’t have to add profiling code to your app or change your project’s build settings. Profile your project from Xcode to launch Instruments. Choose a profiling template and click the Record button to profile your app.

What You Need
To take full advantage of this book, you need the following:

	A Mac with Xcode installed

	An app project to profile with Instruments

If you are profiling an iOS app, having an iOS device helps. You can profile apps on the iOS Simulator, but profiling on a device generates more accurate profiling data.

The book was written for Xcode 26, but having Xcode 26 is not a requirement to use the book. If you are running an older version of Xcode, what you see on your Mac may look different than the screenshots in the book. Almost all the material in the book also applies to Xcode 16. Older versions of Xcode have more differences, but you should be able to use the book with an older version of Xcode. Instruments doesn’t have major changes every year.

The book title is Profiling Swift Apps, but you can use this book if you code in other languages. Most of the material also applies to Objective-C apps. Instruments also supports profiling C and C++ programs.

Book Contents
The book starts with a quick start guide to using Instruments. You will learn how to measure your app’s memory usage and find the code that allocates the most memory by using the Allocations instrument. After finishing that chapter you will know enough about Instruments to do the most common tasks.

The next chapter provides more detailed information on running and configuring Instruments. You will learn how to add instruments to a trace, alternate methods of launching Instruments, and how to configure instruments.

The next chapter shows you how to read the data that Instruments generates. You will learn how to read the timeline pane graphs, how to find your code in the Instruments data, and how to narrow down the information Instruments shows.

The rest of the book goes into details on the most commonly used instruments. There are chapters on the following instruments:

	Leaks instrument

	Allocations instrument

	Time Profiler instrument

	SwiftUI instrument

Every chapter ends with a Takeaways section that lists the most important information to remember from the chapter.

Leaks Instrument Chapter
The Leaks instrument chapter covers the following topics:

	Checking for memory leaks

	Seeing how many memory leaks your app has along with the amount of leaked memory

	Finding the code that allocates the leaked memory

	Viewing a leak’s history of memory events

	Finding code that increases reference counts

	Viewing details on leak cycles

Allocations Instrument Chapter
The Allocations instrument chapter covers the following topics:

	Configuring the instrument

	Controlling what appears in the timeline pane’s graph

	Filtering allocation data

	Seeing how much memory your app uses

	Finding code that allocates a large amount of memory

	Finding the largest memory allocations in your app

	Measuring memory growth with generations

Time Profiler Instrument Chapter
The Time Profiler instrument chapter covers the following topics:

	Configuring the instrument

	Controlling what appears in the timeline pane’s graph

	Seeing how much CPU your app uses

	Finding the slow spots in your code

	Reading the flame graph

	Showing statistics about individual CPU cores

	Seeing if the main thread is blocked

	Finding hangs in your app

SwiftUI Instrument Chapter
The SwiftUI instrument chapter covers the following topics:

	Finding the cause of long view updates

	Seeing what causes SwiftUI views to update

	Examining your app's SwiftUI view hierarchy

Contacting the Author
If you have any questions about the book, find a mistake in the book, or want other instruments to be added to the book, send an email to the following address:

instrumentsbook@swiftdevjournal.com

Instruments Quick Start Guide
You are reading this book because you want to learn how to use Instruments to find problems in your code. I wrote this chapter to help you do this without going off on tangents about the various options Instruments has.

This chapter covers the most common path to using Instruments. You will use the Allocations instrument to measure your app’s memory usage. After finishing the chapter you will know how to do the following things with Instruments:

	Launch Instruments

	Profile your app with Instruments

	Find how much memory your app uses

	Find the code that allocates the most memory in your app

To follow along with this chapter, open the Xcode project for your app. If you are making an iOS app and have an iOS device, connect the device to your Mac.

Run Instruments
You might be wondering how to launch Instruments since there is no Instruments app in your Mac’s Applications folder. Instruments is in Xcode’s app bundle. You launch Instruments from Xcode.

Profiling your app with Instruments is a three step process.

	Choose Product > Profile in Xcode or press Cmd-I to build your project and launch Instruments.

	Choose a template in Instruments.

	Click the Record button.

When Instruments launches a window opens for you to choose a profiling template. A template contains the instruments to use to profile your app.

[image: Template choosing window]

Select the Leaks template (the Leaks template includes the Allocations instrument) and click the Choose button to open a new Instruments trace document.

[image: Trace document window before profiling]

The trace document window should show a collection of configuration settings. You shouldn’t have to make any changes. Make sure the "Only track VM allocations" checkbox is not selected. If that checkbox is selected, the Allocations instrument won’t track and record most of your app’s memory allocations.

Click the Record button in the upper left corner of the trace document window to start recording.

When you start recording, Instruments launches your app. Run your app. Click the Pause button to pause recording. Click the Stop button to stop recording.

Reading the Profiling Data
You’ve completed the easier part of using Instruments: profiling your app. Now it’s time for the harder part: making sense of all the data it generates. For the Allocations instrument you want to know how much memory your app is using and find the code that allocates the most memory.

I divide the material on reading profiling data into three parts. The first part introduces the trace document window. The second part shows how to find how much memory your app is using. The third part shows how to find the code in your app that allocates the most memory.

Trace Document Window
The trace document window shows the data that Instruments recorded when profiling your app.

[image: Trace document window after profiling]

The trace document window has the following sections:

	Sidebar

	Track filter

	Timeline pane

	Jump bar

	Detail view

	Extended detail view

	Bottom bar

For this chapter the most important sections are the jump bar and detail view.

The sidebar shows a list of runs in the trace. A run starts when you click the Record button and ends when you click the Stop button. There should be only one run if you are following along by profiling your app.

The track filter lets you filter the instruments that appear in the timeline pane. The Allocations instrument does not use the track filter.

The timeline pane shows a graph of statistics for each instrument in the trace. Selecting an instrument shows that instrument’s statistics in the detail view.

The jump bar allows you to choose what to show in the detail view. The detail view shows the profiling statistics. The extended detail view shows additional data. For most instruments the extended detail view shows the call stack.

The bottom bar has controls to filter what appears in the detail view as well as instrument-specific controls.

Seeing How Much Memory Your App Uses
The first thing you want to know when using the Allocations instrument is how much memory your app is using. Select the Allocations instrument from the timeline pane to view memory statistics.

Initially the Allocation instrument’s detail view shows the statistics view. The statistics view has a table. You will notice the table has hundreds of categories. How do you find how much memory your app is using from the flood of data Instruments is showing?

Look at the All Heap Allocations category. The Persistent column for that category tells you the amount of memory your app is using. If the Persistent column shows 30.23 MiB, it means your app is using 30.23 megabytes of memory.

Is My App Allocating Too Much Memory?
The next question you have after you see how much memory your app uses is if it’s too much. The answer depends on the type of app you are making.

A todo list app that uses 300 megabytes of memory is using too much memory. A todo list app has a limited number of todos, probably fewer than 20, and each todo contains a title and a short description. 20 items with a paragraph of text for each item shouldn’t use hundreds of megabytes of memory. But if you are making a video editing app, 300 megabytes isn’t too much. Videos take up a lot of storage space. The app needs to load at least part of the video into memory to edit the video. Loading part of a video into memory is going to use more memory than a list of todos.

Finding the Code that Allocates the Most Memory
If you find your app is using too much memory, the next step is to find the code in your app that allocates the most memory. You have probably noticed that the table of statistics the Allocations instrument initially shows doesn’t show anything code-related.

How do you find the code that allocates lots of memory? Switch to the call tree view. The call tree view shows the functions in your app that were called when profiling the app.

Showing the Call Tree View
In the jump bar, click on Statistics and choose Call Trees to switch to the call tree view. You can also press Cmd-2 to show the call tree view for the Allocations instrument.

Finding Your Code in the Call Tree View
When you first look at the call tree view, you will notice it’s not showing any functions you wrote. You are going to see functions with names like start and start_wqthread. How do you find your code in the call tree view?

Configure what appears in the call tree view to make finding your code easier. Click the Call Tree button in the bottom bar to open a popover with a series of checkboxes.

[image: invert call tree]

You may have to scroll through the bottom bar to find the Call Tree button. The bottom bar of the Allocations instrument has a lot of controls.

Select the "Invert Call Tree" and "Hide System Libraries" checkboxes. Inverting the call tree brings the memory allocating functions to the top of the call tree view. Hiding the system libraries hides Apple’s code, leaving your code in the call tree view.

After selecting the checkboxes, the call tree view should show your code.

[image: call tree]

Call Tree View Listing
There is a call tree view listing for each function that allocates memory. Each listing has two columns of information: Bytes Used and Count. The Bytes Used column tells you the amount of allocated memory and the percentage of total allocated memory. The Count column tells you the number of memory allocations. If an entry has the following values:

Bytes Used: 1.21 MiB 3.0%
Count: 874

It means the function made 874 memory allocations totaling 1.21 megabytes. The 1.21 megabytes is 3 percent of the app’s total allocated memory.

What About main()?
The top of the call tree view most likely has a main listing. This listing is going to have high Bytes Used and Count values. Don’t worry about the main listing. The main function is the starting point of your app. It’s going to be on the call stack the whole time your app is running. There isn’t anything you can do to get the main function to allocate less memory.

Navigating the Call Tree View
Most of the listings in the call tree view have a disclosure triangle next to them. Clicking the triangle shows the next level of the call tree. If you navigate the call tree view, you will see the call tree is deeply nested with many levels. You have to do a lot of disclosure triangle clicking to navigate the call tree.

Option-clicking a disclosure triangle next to a function in the call tree view expands its subtree so you don’t have to be constantly clicking disclosure triangles. Option-clicking again on the expanded disclosure triangle contracts the subtree.

Seeing Lines of Code that Allocate Memory
Double-clicking a function in the call tree view or the extended detail view shows the source view. The source view shows the code for the function you selected by double-clicking.

[image: source view]

For the Allocations instrument, the source view shows the lines of code that allocated memory along with the amount of memory allocated. The extended detail view shows a list of lines that allocated memory with the lines that allocated the most memory at the top. Select a line from the list to highlight the line in the source view.

Takeaways
Remember the following points when using Instruments:

	Choose Product > Profile in Xcode or press Cmd-I to profile your app.

	Select an instrument from the timeline pane to view its statistics in the detail view.

	Use the jump bar to change what appears in the detail view.

	Use the call tree view to find problem areas in your code.

Remember the following points when using the call tree view:

	Select the "Invert Call Tree" and "Hide System Libraries" checkboxes to find your code in the call tree view.

	Option-click the disclosure triangles in the call tree view to minimize the amount of clicking you have to do.

	Double-click a function in the call tree view to see statistics on specific lines of code.

	Don’t worry about the listing for the main function in the call tree view. You have no control over main.

SwiftUI Instruments (Xcode 16)
AUTHOR’S NOTE

I wrote this chapter before WWDC 25. Apple announced a new SwiftUI instrument at WWDC that makes the material in this chapter obsolete. The book has a chapter on the new SwiftUI instrument.

If you are using an older version of Xcode, the material in this chapter will help you. You can also treat this chapter as a writing sample to see if you like my writing style.

END NOTE

The SwiftUI instruments help you find the causes of slow running SwiftUI apps. Use the SwiftUI instruments to find the views that are drawn the most and the variables in your code that trigger the most redraws.

Choose the SwiftUI template to use the SwiftUI profiling instruments.

[image: SwiftUI template choosing window]

The SwiftUI template includes the following instruments:

	View Body

	View Properties

	Core Animation Commits

	Time Profiler

	Hangs

The View Body instrument tells you the number of times your SwiftUI views were drawn. The View Properties instrument tells you the data that triggered the view redraws. The Core Animation Commits instrument provides details about the redraws.

This chapter does not cover the Time Profiler and Hangs instruments. The Time Profiler instrument chapter covers those chapters.

Track Filters
The SwiftUI instruments have the following track filters, which you can find above the timeline pane:

	Target

	Slow .body

	Slow Frames

	CPUs

The Target filter shows all the instruments in the timeline pane.

The Slow .body filter shows the View Body and Time Profiler instruments in the timeline pane, hiding the other instruments. Choosing the Slow .body filter lets you focus on the View Body instrument to find what views redraw the most. Click the Target filter to show the hidden instruments.

The Slow Frames filter shows the Core Animation Commits and Time Profiler instruments in the timeline pane, hiding the other instruments. Choosing the Slow Frames filter lets you focus on the Core Animation Commits instrument to find the slowest view redraws and the code causing them.

The CPUs filter shows a listing for each CPU core in the timeline pane so you can view profiling statistics for a specific CPU core. The CPUs filter hides all the SwiftUI instruments, making the filter less useful for SwiftUI app profiling.

View Body Instrument
The View Body instrument tells you the number of times each of the SwiftUI views in your app were redrawn during the trace and how long it took to redraw them.

Timeline Pane
The timeline pane for the View Body instrument has at least two graphs: one for your app and one for SwiftUI. There may be more graphs if you divide your app’s code into modules or Swift packages.

There is one bar on the graph for each view redraw. If you move the pointer over an area of the graph, Instruments opens a tooltip that shows the drawn view and the amount of time it took to draw the view. Clicking on a bar in the graph shows the details of the draw in the detail view.

Finding the Views that were Redrawn the Most
The View Body instrument initially shows the timing summary, which tells you the number of times the SwiftUI views were drawn. If you don’t see the timing summary, press Cmd-1 or choose Timing Summary from the jump bar. The timing summary consists of a table with at least two rows: one for SwiftUI and one for your app. There may be additional rows if you divide your app’s code into modules. Each row has a disclosure triangle next to it.

How do you find the SwiftUI views in your app that were redrawn the most?

Start by clicking the disclosure triangle next to your app in the table. The table shows a row for each of the SwiftUI views in your app. The views that were drawn the most should appear at the top. If you don't see the views that were drawn the most, click the Count table header to sort the views by count.

[image: View Body instrument stats]

Look for views with high Count, high Average Duration, and high Total Duration values. Those are the views SwiftUI redraws the most and spends the most time redrawing.

Reading Statistics for Underlying SwiftUI views.
What do I mean by “underlying SwiftUI views”? SwiftUI comes with a collection of views, controls, and other components that you use to build your app’s views. I’m referring to that built-in collection when I talk about underlying views.

The SwiftUI module in the timing summary shows the statistics for the underlying views. If you want to see how many times SwiftUI draws a button in your app or uses a button style, look in the SwiftUI module.

Click the disclosure triangle next to SwiftUI to see a row for each underlying SwiftUI view. Notice there are many more rows for SwiftUI’s views than your app’s views.

You can filter what appears in the table by typing in the Input filter text field in the bottom bar. If you want to see how many times a button style was used, enter ButtonStyle in the text field.

Seeing Each Redraw of a View
Moving the pointer over a view in the timing summary’s table makes a small button appear next to the view name. Click that button to see a list of each redraw of that view. The View Body instrument shows the following information for each redraw:

	The start time

	The duration

	The module

	The view type

The duration is the most interesting piece of information. The module and view type are the same for each redraw.

Seeing Every Redraw
The intervals view shows every redraw the View Body instrument records. Press Cmd-2 or choose Intervals from the jump bar to switch to the intervals view. Instruments shows the following information for each redraw:

	The start time

	The duration

	The module

	The view type

Instruments defaults to showing the redraws in chronological order. Sorting by module lets you see the redraws Instruments took in your app module. You can also use the Input filter text field to filter what appears in the intervals view. Entering ButtonStyle will show every button style redraw and hide the others.

View Properties Instrument
If you find one of your views is being redrawn often, you want to figure out what is causing the view to redraw so much. How do you find the cause of redraws?

SwiftUI views redraw when the data bound to the views changes. The View Properties instrument records a sample every time there’s a change to a variable that is bound to a SwiftUI view.

What is a view property? A view property is a variable that is part of a SwiftUI view’s struct. In the following code listing:

struct PageList: View {
 @Binding var wiki: Wiki
 @Binding var selection: Page?
 @State private var showAddSheet = false
}

The variables wiki, selection, and showAddSheet are view properties.

Timeline Pane
The View Properties instrument’s graph shows the number of view properties that were updated. Moving the pointer over the graph opens a tooltip with the number of updated properties and the time it took to update them.

Seeing the Properties that Update the Most
The first thing you want to know when using the View Properties instrument is what properties are changing the most. The more a property changes, the more the views that are bound to that property redraw.

When you select the View Properties instrument from the instrument list, the detail view shows a table with the current values for each property. Unfortunately this table doesn’t help you see the properties that change the most.

Press Cmd-2 or choose Summary from the jump bar to switch to the summary view. You will notice the summary view for the View Properties instrument looks similar to the timing summary in the View Body instrument. There is a table with a row for SwiftUI, your app, and any additional modules. Each row has a disclosure triangle.

When you click the disclosure triangle next to your app, you will see a list of your app’s view types. The views with the most updates appear at the top. The list looks similar to what you see in the View Body instrument, but the View Properties instrument has additional levels of data to show.

[image: View Properties instrument stats]

Clicking the disclosure triangle next to a view type shows the number of updates for each property type. The View Properties instrument shows the property’s data type, not the name of the property. Look at the source code for your view to find the property name. If the view has multiple properties with the same data type, you’re not going to know which property the instrument references.

Click the disclosure triangle next to a property type to see the number of updates for each value the property type has. For a Boolean variable, the View Properties instrument tells you the number of times the variable was set to true and set to false.

Some values are really long, especially if they are structs or classes that have many properties or have an array of items. You might not be able to read the entire value in the table. Drag the splitter on the table header to make the first column wider so you can read the longer values. You can also select the value, right-click, and choose Copy to copy the value so you can paste it into a text file to view the whole value.

Seeing Each Property’s Current Value
The current values view shows the current value of each view property. Press Cmd-1 or choose Current Values from the jump bar to switch to the current values view. The current values view has a table with the following columns:

	The module, which can be one of your app’s modules or SwiftUI.

	The view type.

	The property type, such as @State<T> or @Binding<T>, where T is a data type.

	The property’s value.

Some values are really long so you might not be able to see the entire value. Drag the splitter in the Value column’s header to make the Value column wider to read values that take a lot of space. You can also select the value, right-click, and choose Copy to copy the value so you can paste it into a text file to view the whole value.

Enter the name of your app in the Input filter text field in the bottom bar to show the current values for your app’s view properties and hide the SwiftUI module’s properties.

Seeing Every Property Change
The updates view lists every change that happened to a view property during the trace. Press Cmd-3 or choose Updates from the jump bar to switch to the updates view. For each change Instruments shows the timestamp and a description of the transition.

You will notice there are a lot of changes. Enter the name of your app in the Input filter text field in the bottom bar to focus on the transitions in your app and hide the SwiftUI module’s transitions.

When you select an entry, the extended detail view shows the module, the view type, and the property type of the transition.

Core Animation Commits Instrument
A Core Animation commit occurs when Core Animation needs to draw something on the screen. Use the Core Animation Commits instrument to see data about the redraws in your SwiftUI app.

Configuration Options
The Core Animation Commits instrument lets you specify when to do expensive commit sampling. What is expensive commit sampling? Instruments records the call stack for time consuming redraws so you can find the code causing the slow redraws.

You can disable the sampling, sample running threads, or sample running and blocked threads. Disabling expensive commit sampling doesn’t appear to stop the sampling.

Timeline Pane
The timeline pane’s graph has a bar for each commit. Low severity commits are green. Medium severity commits are orange. High severity commits are red.

Moving the pointer over the graph opens a tooltip with the name of the process and the amount of time the commit took. The name of the process is usually your app’s name.

Seeing Redraw Statistics
The detail view for the Core Animation Commits instrument initially shows the summary view. The summary view shows statistics about the redraws. It looks similar to the timing summary for the View Body instrument. The main difference is the Core Animation Commits instrument’s summary view has rows for commit severity: low, moderate, and high.

Look at the high severity commits first. Those are the commits for the slowest redraws. If your app has no high severity commits, look at the moderate severity commits.

Moving the pointer over a process severity in the table makes a small button appear next to the severity name. Click the button to show each commit Instruments recorded. The Core Animation Instrument provides the following information about each commit:

	Start time

	Duration

	Description, which is usually something like Main Thread

Seeing the Code that Causes Slow Redraws
If you find any high severity commits in your app, you want to find the code causing the time consuming draws. To find that code, press Cmd-2 or choose Profile: Expensive Commits from the jump bar to switch to the expensive commits profile.

The expensive commits profile provides a call tree view for expensive commits, commits with high and moderate severity. For each function in the call tree, there’s a column with the number of samples and the Self number of samples. Look for functions with a high Self number of samples.

Finding your code is easier if you click on the Call Tree button in the bottom bar and invert the call tree and hide system libraries.

If the expensive commits profile isn’t showing anything, check three things. First, make sure you have commits with high or moderate severity. Second, clear any inspection ranges in the timeline pane so the expensive commits profile shows the data for the entire run. Third, make sure you enabled expensive commit sampling. The initial setting is to disable expensive commit sampling. Select the Next Recording item at the top of the sidebar to see the configuration options. Choose Running & Blocked Threads and record another run.

Seeing Every Commit
Press Cmd-3 or choose Intervals from the jump bar to switch to the intervals view. The intervals view shows a list of each commit the Core Animation Commits instrument recorded. Instruments shows the following information for each commit:

	Start time

	Duration

	Description, which is usually something like Main Thread

The intervals view doesn’t help much because the description doesn’t tell you much. You can sort the table by duration to find the commits that take the most time. But you can get similar information from the summary view by moving the pointer over the high severity row and clicking the small button.

Takeaways
Remember the following points about the SwiftUI instruments:

	Use the View Body instrument to find the views that redraw the most.

	Click the disclosure triangle next to your app in the View Body instruments’s timing summary to see how many times your app’s views redraw.

	Use the View Properties instrument to find the variables that trigger the view redraws.

	Press Cmd-2 in the View Properties instrument to see the variables that update the most.

	Use the Core Animation Commits instrument to find the redraws that take the most time.

	Use the expensive commits profile in the Core Animation Commits instrument to find the code causing the slow redraws.

OEBPS/Images/InstrumentsBookSampleCover.png
Profiling Swift Apps

Use Instruments to find performance
problems in your iOS and Mac apps.

BOOK SAMPLE

Mark Szymczyk

OEBPS/Text/nav.xhtml

Table of Contents

 		
 Copyright Page
Copyright Page

 		
 Introduction
Introduction

 		 Introduction
Introduction

 		 What is Instruments?
What is Instruments?

 		 What You Need
What You Need

 		 Book Contents
Book Contents

 		 Leaks Instrument Chapter
Leaks Instrument Chapter

 		 Allocations Instrument Chapter
Allocations Instrument Chapter

 		 Time Profiler Instrument Chapter
Time Profiler Instrument Chapter

 		 SwiftUI Instrument Chapter
SwiftUI Instrument Chapter

 		 Contacting the Author
Contacting the Author

 		
 Instruments Quick Start Guide
Instruments Quick Start Guide

 		 Instruments Quick Start Guide
Instruments Quick Start Guide

 		 Run Instruments
Run Instruments

 		 Reading the Profiling Data
Reading the Profiling Data

 		 Trace Document Window
Trace Document Window

 		 Seeing How Much Memory Your App Uses
Seeing How Much Memory Your App Uses

 		 Is My App Allocating Too Much Memory?
Is My App Allocating Too Much Memory?

 		 Finding the Code that Allocates the Most Memory
Finding the Code that Allocates the Most Memory

 		 Showing the Call Tree View
Showing the Call Tree View

 		 Finding Your Code in the Call Tree View
Finding Your Code in the Call Tree View

 		 Call Tree View Listing
Call Tree View Listing

 		 What About main()?
What About main()?

 		 Navigating the Call Tree View
Navigating the Call Tree View

 		 Seeing Lines of Code that Allocate Memory
Seeing Lines of Code that Allocate Memory

 		 Takeaways
Takeaways

 		
 SwiftUI Instruments
SwiftUI Instruments

 		 SwiftUI Instruments (Xcode 16)
SwiftUI Instruments (Xcode 16)

 		 Track Filters
Track Filters

 		 View Body Instrument
View Body Instrument

 		 Timeline Pane
Timeline Pane

 		 Finding the Views that were Redrawn the Most
Finding the Views that were Redrawn the Most

 		 Reading Statistics for Underlying SwiftUI views.
Reading Statistics for Underlying SwiftUI views.

 		 Seeing Each Redraw of a View
Seeing Each Redraw of a View

 		 Seeing Every Redraw
Seeing Every Redraw

 		 View Properties Instrument
View Properties Instrument

 		 Timeline Pane
Timeline Pane

 		 Seeing the Properties that Update the Most
Seeing the Properties that Update the Most

 		 Seeing Each Property’s Current Value
Seeing Each Property’s Current Value

 		 Seeing Every Property Change
Seeing Every Property Change

 		 Core Animation Commits Instrument
Core Animation Commits Instrument

 		 Configuration Options
Configuration Options

 		 Timeline Pane
Timeline Pane

 		 Seeing Redraw Statistics
Seeing Redraw Statistics

 		 Seeing the Code that Causes Slow Redraws
Seeing the Code that Causes Slow Redraws

 		 Seeing Every Commit
Seeing Every Commit

 		 Takeaways
Takeaways

OEBPS/Images/InvertCallTree.png
Separate by Category
Separate by Thread
Invert Call Tree
Hide System Libraries

Flatten Recursion
S——— am—

\ [

nymous VM & Call Tree Call Tree Cor

OEBPS/Images/ChooseTemplateWindow.png
Choose a profiling template for: .= Mac mini M4) © Tempo

All Standard User Recent S)

Game Performance Garbage Collection Logging Metal System Trace Network
{s} o & % 3 S
Processor Trace RealityKit Trace SceneKit Swift Concurrency SwiftUl System Trace
@
-
O IS
!
Time Profiler Zombies

Leaks
& Measures general memory usage, checks for leaked memory, and provides statistics on object allocations by class as well as
memory address histories for all active allocations and leaked blocks.

Open an Existing File... Cancel

OEBPS/Images/ViewPropertiesInstrumentAppStats.png
Summary ¢

Module / View Type [Property Type / Value

v o* Al
> Swiftul
v Bartleby

>
>

v

VVVVVVVVYVYVYVYVYVYVYV

ImagelList
ImageView
ChapterListView
v Binding<Book>

Book(edited: false, chapters:
Book(edited: false, chapters:
Book(edited: false, chapters:
Book(edited: false, chapters:

> State<Optional<Chapter>>

> State<Bool>
ContentView
PreviewTableOfContents
EPUBPreview
ImageBrowser
EditMetadataView
PreviewView

ChapterView
MetadataEditorCoverView
MetadataEditor
SparkleView
ImageTagView

ImportView

PublishView
MetadataEditorFormButtons
MetadataEditorTextFields

: [Bartleby.Chapter, Bart...
: [Bartleby.Chapter, Bart...
: [Bartleby.Chapter, Bart...
: [Bartleby.Chapter, Bart...

Updates v

7,328
7,105
223
68

59

21

12

7

=N

S a8 8 A LA NNONNN®O 2NN NN

OEBPS/Images/SourceView.png
Annotations

< Book =v

Source

62
63

65
66
67

603.06 KiB
1.59 KiB

147.25 KiB

mutating func readChapter(chapterFile: FileWrapper) {
if let filename = chapterFile.filename {

let fileComponents = filename.components(separatedBy: "-00")
let newChapter = Chapter()
newChapter.title = fileComponents.first!
newChapter.read(data: chapterFile.regularFileContents!)
newChapter.position = Int(fileComponents[1])!
chapters.append(newChapter)

603.06 KiB
147.25 KiB
1.59 KiB
816 Bytes
656 Bytes

let fileComponents..
newChapter.read(da..
let newChapter = C..
newChapter.positio..

chapters.append(ne..

OEBPS/Images/ViewBodyInstrumentAppViewsStats.png
Timing Summary ¢

Module / View Type Count v Total Dura... Min Durati... Avg Durati... Max Durati... Std Dev D...
v o* Al 20,588 135.17 ms 1.00 ps 6.57 ps 16.89 ms 122.51 ps
> Swiftul 20,325 91.30 ms 1.00 ps 4.49 ps 1.01 ms 20.22 ps
v Bartleby 263 43.87 ms 1.79 pus 166.81 ps 16.89 ms 1.06 ms
ImageView 59 21.87 ms 4.12 ps 370.70 ps 1.72 ms 358.07 us
ImagelList 58 1.91 ms 14.00 ps 32.92 ps 141.25 ps 24.13 ps
ChapterListView 12 578.83 us 18.67 us 48.24 ps 149.17 ps 45.29 ps
ContentView 1 854.17 us 29.04 ps 77.65 us 157.92 us 46.09 ps
BookCommands.PreviewView 10 73.79 us 3.62 ps 7.38 us 22.04 ps 5.60 us
BookCommands.EditMetadataView 10 48.54 ps 2.21 s 4.85 ps 15.71 us 4.23 ps
VerticalLabelStyle 8 31.71 ps 2.50 pys 3.96 us 11.54 ps 3.09 us
BookCommands.PublishView 8 124.42 ps 7.67 us 15.55 ps 44.96 ps 13.19 ps
BookCommands.ImportView 8 57.42 ps 4.17 ps 7.18 us 20.25 ps 5.34 ps
BookCommands.ExportView 8 21.25 ps 1.79 pus 2.66 ps 5.00 pys 1.02 pus
HeadingTagMenuView 8 140.29 ps 11.67 ps 17.54 ps 32.21ps 8.73 us
BoldltalicView 8 55.04 ps 4.17 ps 6.88 us 11.42 ps 2.71 s
ImageTagView 8 58.50 us 3.568 us 7.31 ps 26.88 ps 7.92 ps
MiscellaneousTagView 8 34.04 ps 2.54 ps 4.25 ps 9.75 us 2.33 s
EPUBPreview 7 140.58 ps 9.79 us 20.08 ps 54.42 ps 16.33 us
ImageBrowser 7 31.00 ps 2.21 ps 4.43 us 11.08 ps 3.03 ps
PreviewTableOfContents 5 173.00 ps 15.46 ps 34.60 ps 68.67 us 20.01 ps
ChapterView 5 17.03 ms 31.92 pus 3.41ms 16.89 ms 7.54 ms
CodeEditor 5 11.25 ps 1.92 pus 2.25 ps 2.75 us 334 ns
BartlebyApp 1 327.67 ps 327.67 ps 327.67 ps 327.67 ps
BookCommands 1 18.54 us 18.54 us 18.54 us 18.54 us
TagCommands 1 5.29 pus 5.29 pus 5.29 pus 5.29 pus
SparkleView 1 26.75 ps 26.75 ps 26.75 ps 26.75 ps
HelpMenu 1 23.71 ps 23.71 ps 23.71 ps 23.71 ps
ListHeader 1 2.96 ps 2.96 ps 2.96 ps 2.96 ps

OEBPS/Images/TraceWindowBeforeProfiling.png
C X) Gl @ Untitled = Mac mini M4) 2 Bartleby

Next Recording o

8= Next Recording + Instrument .
% Allocations ® Recorder Settings
R [instument) These settings determine recorder behavior and are common across all instruments.

Recording Mode: @ Immediate

a Leaks Process and display all recorded data immediately during recording.
Deferred

Record all data, but delay processing until after the recording ends.

Record just the last few seconds of data. Can often delay capturing until after

I nstru ments List the recording ended for minimal overhead during the recording.

Stop recording after 12 hours

Sidebar

&7 Allocations

All Allocations: Discard unrecorded data upon stop
Discard events for freed memory

Only track VM allocations

Heap Allocations: Record reference counts
Identify virtual C++ objects
Enable NSZombie detection

Recorded Types: Type String Match Action
* Contains ¢ Record ¢
3 A A
. NS Has prefix < Ignore <
Recordlng CF Has prefix ¢ Ignore ¢
Options Malloc Has prefix ¢ Ignore ¢
—+ Rules are evaluated top-to-bottom. Later rules override earlier ones.

A Leaks

Snapshot: @ Automatically every 10 seconds

Manually

You can always trigger snapshots manually from the Snapshots
button at the bottom of this instrument's Detail Area.

OEBPS/Images/TraceWindowAfterProfiling.png
eoe [

32 Next Recording

Runs

Run 1

i 00:00:17

®

Untitled
Run 1

=+ Instrument

7 Allocations
Instrument ~
O Leaks

Jump Bar —» =caitrees ¢

Sidebar

Bytes Used v

4165.17 MB
26.06 MB
517.03 KB
41.72 KB
29.55 KB
29.25 KB
22.25KB
12.56 KB
12.52 KB
11.28 KB
11.12 KB
7.16 KB
7.05 KB
7.03KB
4.25 KB
160 Bytes
80 Bytes
64 Bytes
48 Bytes
16 Bytes
16 Bytes
16 Bytes
16 Bytes

Detail View

2 Mac mini M4) (2 Bartleby

All Tracks

Track Filter ®

00:17.447

00:00.000 00:30.000

All Heap & Anonymous VM

Leak Checks o

Timeline Pane

Count Symbol Name
99.3% 338815 @ > start dyld
0.6% 32787 @ > start_wqgthread libsystem_pthread.dylib
0.0% 891 @ > thread_start libsystem_pthread.dylib
0.0% 356 [> -[NSApplication run] AppKit

> specialized runApp

0.0% 179 [.) > _CFRunLoopRun CoreFoundation

0.0% 89 > -[NSDocument(NSPersistentUISupport) restoreDocumentWindowWithldentifier:state:comple
0.0% 179 e > RunCurrentEventLoopinMode HIToolbox

0.0% 178 8 > runApp<A>(_:) SwiftUl

0.0% 90 B > static BartlebyApp.$main() [inlined] Bartleby

0.0% 178 [> static App.main() SwiftUl

0.0% 91 m > CFRunLoopRunSpecific CoreFoundation

0.0% 920 > NSApplicationMain AppKit

0.0% 90 m > __CFRunLoopDoBlocks CoreFoundation

0.0% 90 e > ReceiveNextEventCommon HIToolbox

0.0% 1 &= > -[NSApplication(NSEventRouting) _nextEventMatchingEventMask:untilDate:inMode:dequeue
0.0% 3 e > _BlockUntilNextEventMatchingListinModeWithFilter HIToolbox

0.0% 2 > _DPSNextEvent AppKit

0.0% 1 m > __CFRUNLOOP_IS_CALLING_OUT_TO_A_BLOCK__ CoreFoundation

0.0% 1 > -[NSPersistentUIRestorer _finishedRestoringWindowsWithZOrder:options:completionHandlel
0.0% 1 &= > _97+[NSDocumentController(NSWindowRestoration) restoreWindowWithldentifier:state:cor
0.0% 1 &= > -[NSWindow _setUpFirstResponderBeforeBecomingVisible] AppKit

0.0% 1 = > -[NSWindow _reallyDoOrderWindow:] AppKit

Bottom Bar Detail View

Mark Generation Created & Persistent © All Heap & Anonymous VM ©

Extended —

Heaviest Stack Trace

OOOOOOOOOOOOOOOBB000E0000A

00:00:17 @ =

29.55 KB
29.55 KB
29.55 KB
29.55 KB
29.55 KB
29.55 KB
29.55 KB
29.55 KB
29.55 KB
29.55 KB
22.47 KB
22.47 KB
22.47 KB
22.47 KB
22.47 KB
22.47 KB
22.47 KB
22.47 KB
22.47 KB
22.47 KB
22.47 KB
22.47 KB
22.47 KB
22.47 KB
22.47 KB
22.47 KB

Duplicate

01:00.000

=l

specialized runApp(_:)
NSApplicationMain
-[NSApplication run]
-[NSApplication(NSEv...
_DPSNextEvent
_BlockUntilNextEvent...
ReceiveNextEventCom...
RunCurrentEventLoopl...
CFRunLoopRunSpecific
__CFRunLoopRun
__CFRunLoopDoBlocks
__CFRUNLOOP_IS_CA...
___NSMainRunLoopPe...
__89-[NSDocumentCo...
__99-[NSDocumentCo...
-[NSDocumentControll...
__97+[NSDocumentCo...
-[NSDocument(NSPer...
__99-[NSApplication(...
__96-[NSPersistentUl...
-[NSPersistentUIResto...
-[NSPersistentUIResto...
-[NSWindow _doOrder...
-[NSWindow _reallyDo...
-[NSWindow _reallyDo...
-[NSWindow _doWind...

OEBPS/Images/SwiftUITemplateWindow.png
Choose a profiling template for: .= Mac mini M4) Bartleby

All Standard User Recent S)

S Y N\ ®

Game Performance Garbage Collection Leaks Logging Metal System Trace Network

{s} 3 & %o & e
Processor Trace RealityKit Trace SceneKit Swift Concurrency SwiftUl System Trace
@
-
O IS
!
Time Profiler Zombies

Swiftul
& SwiftUl analysis tools for tracing .body invocations for View types, DynamicViewProperty updates over time, and identifying
slow frames.

Open an Existing File... Cancel ose

OEBPS/Images/CallTree.png
= Call Trees ¢

Bytes Used v Count Symbol Name
4096.57 MB 98.1% 69 > @nonobjc JSContext.init() [inlined] Bartleby
72.90 MB 1.7% 236491 static BartlebyApp.$main() [inlined] Bartleby
1.62 MB 0.0% 24 > Book.readlmage(imageFile:) [inlined] Bartleby
1.14 MB 0.0% 222 > WebView.updateNSView(_:context:) Bartleby
128.56 KB 0.0% 113 > @nonobjc NSRegularExpression.init(pattern:options:) Bartleby
96.70 KB 0.0% 534 > specialized Book.buildModifiedDateString() Bartleby

96.36 KB

> Book.readCover(configuration:) Bartleby @

> stantiateConcreteTypeFromMangledName Bartleby

> @nonobjc NSImage.init(data:) [inlined] Bartleby

> closure #1 in closure #2 in closure #1 in ChapterView.body.getter Bartleby
> Book.readChapter(chapterFile:) Bartleby

49.38 KB % 11
49.38 KB 0.0% 519
44.62 KB 0.0% 406
43.19 KB 0.0% 74

